2023-24 MATH2048: Honours Linear Algebra II Homework 6

Due: 2023-10-30 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let $V = P_1(\mathbb{R})$ and $W = \mathbb{R}^2$ with respective standard ordered bases β and γ . Define $T: V \to W$ by

$$T(p(x)) = (p(0) - 2p(1), p(0) + p'(0)),$$

where p'(x) is the derivative of p(x).

- (a) For $f \in W^*$ defined by f(a, b) = a 2b, compute $T^*(f)$.
- (b) Compute $[T]^{\gamma}_{\beta}$ and $[T^*]^{\beta^*}_{\gamma^*}$ independently.
- 2. Let $V = P_n(F)$, and let c_0, c_1, \ldots, c_n be distinct scalars in F.
 - (a) For $0 \le i \le n$, define $f_i \in V^*$ by $f_i(p(x)) = p(c_i)$. Prove that $\{f_0, f_1, \ldots, f_n\}$ is a basis for V^* .
 - (b) Show that there exist unique polynomials $p_0(x), p_1(x), \ldots, p_n(x)$ such that $p_i(c_j) = \delta_{ij}$ for $0 \le i \le n$. (Hint: Lagrange Polynomials)
 - (c) For any scalars a_0, a_1, \ldots, a_n (not necessarily distinct), find the polynomial q(x) of degree at most n such that $q(c_i) = a_i$ for $0 \le i \le n$ and show that q(x) is unique.
- 3. Let $A, B \in M_{n \times n}(\mathbb{C})$.
 - (a) Prove that if B is invertible, then there exists a scalar $c \in \mathbb{C}$ such that A + cB is not invertible. Hint: Examine det(A + cB).
 - (b) Find nonzero 2×2 matrices A and B such that both A and A + cB are invertible for all $c \in \mathbb{C}$.

- 4. (a) Let T be a linear operator on a vector space V over the field F, and let g(t) be a polynomial with coefficients from F. Prove that if x is an eigenvector of T with corresponding eigenvalue λ, then g(T)(x) = g(λ)x. That is, x is an eigenvector of g(T) with corresponding eigenvalue g(λ).
 - (b) Use (a) to prove that if f(t) is the characteristic polynomial of a diagonalizable linear operator T, then $f(T) = T_0$, the zero operator. (Remark: This result does not depend on the diagonalizability of T.)
- 5. Let $A \in M_{n \times n}(F)$. Recall from §5.1 Q14 that A and A^t have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^t , let E_{λ} and E'_{λ} denote the corresponding eigenspaces for A and A^t , respectively.
 - (a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.
 - (b) Prove that for any eigenvalue λ , dim $(E_{\lambda}) = \dim(E'_{\lambda})$.
 - (c) Prove that if A is diagonalizable, then A^t is also diagonalizable.

The following are extra recommended exercises not included in homework.

1. Let V and W be finite-dimensional vector spaces over F. Let $\psi_1 : V \to V^{**}$ be defined by $\psi_1(v)(f) = f(v)$ for all $f \in V^*$ and $\psi_2 : W \to W^{**}$ be defined by $\psi_1(w)(g) = g(w)$ for all $g \in W^*$. Note that ψ_1 and ψ_2 are isomorphisms.

Let $T: V \to W$ be linear, and define $T^{**} = (T^*)^*$. Prove that $\psi_2 T = T^{**} \psi_1$.

- 2. Let V and W be nonzero vector spaces over the same field, and let $T: V \to W$ be a linear transformation.
 - (a) Prove that T is onto if and only if T^* is one-to-one.
 - (b) Prove that T^* is onto if and only if T is one-to-one.

Hint: Parts of the proof require the result of §2.6 Q19 for the infinite dimensional case.

3. Let A be an $n \times n$ matrix with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$

- (a) Prove that $f(0) = a_0 = \det(A)$. Deduce that A is invertible if and only if $a_0 \neq 0$.
- (b) Prove that $f(t) = (A_{11}-t)(A_{22}-t)\cdots(A_{nn}-t)+q(t)$, where q(t) is a polynomial of degree at most n-2. (Hint: Apply mathematical induction to n.)
- (c) Show that $tr(A) = (-1)^{n-1}a_{n-1}$.