2023-24 MATH2048: Honours Linear Algebra II Homework 6

Due: 2023-10-30 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let $V=P_{1}(\mathbb{R})$ and $W=\mathbb{R}^{2}$ with respective standard ordered bases β and γ. Define $T: V \rightarrow W$ by

$$
T(p(x))=\left(p(0)-2 p(1), p(0)+p^{\prime}(0)\right),
$$

where $p^{\prime}(x)$ is the derivative of $p(x)$.
(a) For $f \in W^{*}$ defined by $f(a, b)=a-2 b$, compute $T^{*}(f)$.
(b) Compute $[T]_{\beta}^{\gamma}$ and $\left[T^{*}\right]_{\gamma^{*}}^{\beta^{*}}$ independently.
2. Let $V=P_{n}(F)$, and let $c_{0}, c_{1}, \ldots, c_{n}$ be distinct scalars in F.
(a) For $0 \leq i \leq n$, define $f_{i} \in V^{*}$ by $f_{i}(p(x))=p\left(c_{i}\right)$. Prove that $\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$ is a basis for V^{*}.
(b) Show that there exist unique polynomials $p_{0}(x), p_{1}(x), \ldots, p_{n}(x)$ such that $p_{i}\left(c_{j}\right)=$ $\delta_{i j}$ for $0 \leq i \leq n$. (Hint: Lagrange Polynomials)
(c) For any scalars $a_{0}, a_{1}, \ldots, a_{n}$ (not necessarily distinct), find the polynomial $q(x)$ of degree at most n such that $q\left(c_{i}\right)=a_{i}$ for $0 \leq i \leq n$ and show that $q(x)$ is unique.
3. Let $A, B \in M_{n \times n}(\mathbb{C})$.
(a) Prove that if B is invertible, then there exists a scalar $c \in \mathbb{C}$ such that $A+c B$ is not invertible. Hint: Examine $\operatorname{det}(A+c B)$.
(b) Find nonzero 2×2 matrices A and B such that both A and $A+c B$ are invertible for all $c \in \mathbb{C}$.
4. (a) Let T be a linear operator on a vector space V over the field F, and let $g(t)$ be a polynomial with coefficients from F. Prove that if x is an eigenvector of T with corresponding eigenvalue λ, then $g(T)(x)=g(\lambda) x$. That is, x is an eigenvector of $g(T)$ with corresponding eigenvalue $g(\lambda)$.
(b) Use (a) to prove that if $f(t)$ is the characteristic polynomial of a diagonalizable linear operator T, then $f(T)=T_{0}$, the zero operator. (Remark: This result does not depend on the diagonalizability of T.)
5. Let $A \in M_{n \times n}(F)$. Recall from $\S 5.1$ Q14 that A and A^{t} have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^{t}, let E_{λ} and E_{λ}^{\prime} denote the corresponding eigenspaces for A and A^{t}, respectively.
(a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.
(b) Prove that for any eigenvalue $\lambda, \operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}\left(E_{\lambda}^{\prime}\right)$.
(c) Prove that if A is diagonalizable, then A^{t} is also diagonalizable.

The following are extra recommended exercises not included in homework.

1. Let V and W be finite-dimensional vector spaces over F. Let $\psi_{1}: V \rightarrow V^{* *}$ be defined by $\psi_{1}(v)(f)=f(v)$ for all $f \in V^{*}$ and $\psi_{2}: W \rightarrow W^{* *}$ be defined by $\psi_{1}(w)(g)=g(w)$ for all $g \in W^{*}$. Note that ψ_{1} and ψ_{2} are isomorphisms.

Let $T: V \rightarrow W$ be linear, and define $T^{* *}=\left(T^{*}\right)^{*}$. Prove that $\psi_{2} T=T^{* *} \psi_{1}$.
2. Let V and W be nonzero vector spaces over the same field, and let $T: V \rightarrow W$ be a linear transformation.
(a) Prove that T is onto if and only if T^{*} is one-to-one.
(b) Prove that T^{*} is onto if and only if T is one-to-one.

Hint: Parts of the proof require the result of $\S 2.6$ Q19 for the infinite dimensional case.
3. Let A be an $n \times n$ matrix with characteristic polynomial

$$
f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

(a) Prove that $f(0)=a_{0}=\operatorname{det}(A)$. Deduce that A is invertible if and only if $a_{0} \neq 0$.
(b) Prove that $f(t)=\left(A_{11}-t\right)\left(A_{22}-t\right) \cdots\left(A_{n n}-t\right)+q(t)$, where $q(t)$ is a polynomial of degree at most $n-2$. (Hint: Apply mathematical induction to n.)
(c) Show that $\operatorname{tr}(A)=(-1)^{n-1} a_{n-1}$.

